Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.512
Filtrar
1.
Biomed Mater ; 19(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626780

RESUMEN

Wool derived keratin, due to its demonstrated ability to promote bone formation, has been suggested as a potential bioactive material for implant surfaces. The aim of this study was to assess the effects of keratin-coated titanium on osteoblast functionin vitroand bone healingin vivo. Keratin-coated titanium surfaces were fabricated via solvent casting and molecular grafting. The effect of these surfaces on the attachment, osteogenic gene, and osteogenic protein expression of MG-63 osteoblast-like cells were quantifiedin vitro. The effect of these keratin-modified surfaces on bone healing over three weeks using an intraosseous calvaria defect was assessed in rodents. Keratin coating did not affect MG-63 proliferation or viability, but enhanced osteopontin, osteocalcin and bone morphogenetic expressionin vitro. Histological analysis of recovered calvaria specimens showed osseous defects covered with keratin-coated titanium had a higher percentage of new bone area two weeks after implantation compared to that in defects covered with titanium alone. The keratin-coated surfaces were biocompatible and stimulated osteogenic expression in adherent MG-63 osteoblasts. Furthermore, a pilot preclinical study in rodents suggested keratin may stimulate earlier intraosseous calvaria bone healing.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Materiales Biocompatibles Revestidos , Queratinas , Osteoblastos , Osteogénesis , Cráneo , Titanio , Titanio/química , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Regeneración Ósea/efectos de los fármacos , Animales , Queratinas/química , Queratinas/metabolismo , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Proliferación Celular/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/lesiones , Osteogénesis/efectos de los fármacos , Ratas , Propiedades de Superficie , Masculino , Línea Celular , Adhesión Celular/efectos de los fármacos , Ensayo de Materiales , Supervivencia Celular/efectos de los fármacos , Ratas Sprague-Dawley
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 243-248, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645860

RESUMEN

Bacterial cellulose (BC) is a type of extracellular polymeric nanomaterial secreted by microorganisms over the course of their growth. It has gained significant attention in the field of bone tissue engineering due to its unique structure of three-dimensional fibrous network, excellent biocompatibility, biodegradability, and exceptional mechanical properties. Nevertheless, BC still has some weaknesses, including low osteogenic activity, a lack of antimicrobial properties, small pore size, issues with the degradation rate, and a mismatch in bone tissue regeneration, limiting its standalone use in the field of bone tissue engineering. Therefore, the modification of BC and the preparation of BC composite materials have become a recent research focus. Herein, we summarized the relationships between the production, modification, and bone repair applications of BC. We introduced the methods for the preparation and the modification of BC. Additionally, we elaborated on the new advances in the application of BC composite materials in the field of bone tissue engineering. We also highlighted the existing challenges and future prospects of BC composite materials.


Asunto(s)
Materiales Biocompatibles , Celulosa , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Celulosa/química , Materiales Biocompatibles/química , Humanos , Huesos/metabolismo , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Bacterias/metabolismo , Animales , Osteogénesis/efectos de los fármacos
3.
Mar Drugs ; 22(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38667777

RESUMEN

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Asunto(s)
Fosfatos de Calcio , Quitosano , Técnicas de Cocultivo , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efectos de los fármacos , Quitosano/química , Fibroblastos/efectos de los fármacos , Porosidad , Nanofibras/química , Fosfatos de Calcio/química , Animales , Regeneración Ósea/efectos de los fármacos , Ratones , Andamios del Tejido/química , Carbonatos/química , Calcificación Fisiológica/efectos de los fármacos
4.
Biol Direct ; 19(1): 30, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654256

RESUMEN

BACKGROUND: Large bone defects pose a clinical treatment challenge; inhibiting transferrin receptor 2 (TfR2), which is involved in iron metabolism, can promote osteogenesis. Iron-based metal-organic frameworks (MOF-Fe) particles not only inhibit TfR2 but also serve as biomimetic catalysts to remove hydrogen peroxide in reactive oxygen species (ROS); excess ROS can disrupt the normal functions of osteoblasts, thereby hindering bone regeneration. This study explored the potential effects of MOF-Fe in increasing osteogenic activity and clearing ROS. METHODS: In vitro experiments were performed to investigate the osteogenic effects of MOF-Fe particles and assess their impact on cellular ROS levels. To further validate the role of MOF-Fe in promoting bone defect repair, we injected MOF-Fe suspensions into the femoral defects of SD rats and implanted MOF-Fe-containing hydrogel scaffolds in rabbit cranial defect models and observed their effects on bone healing. RESULTS: In vitro, the presence of MOF-Fe significantly increased the expression levels of osteogenesis-related genes and proteins compared to those in the control group. Additionally, compared to those in the untreated control group, the cells treated with MOF-Fe exhibited a significantly increased ability to remove hydrogen peroxide from ROS and generate oxygen and water within the physiological pH range. In vivo experiments further confirmed the positive effect of MOF-Fe in promoting bone defect repair. CONCLUSION: This study supports the application of MOF-Fe as an agent for bone regeneration, particularly for mitigating ROS and activating the bone morphogenetic protein (BMP) pathway, demonstrating its potential value.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Osteogénesis , Ratas Sprague-Dawley , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Ratas , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Conejos , Estructuras Metalorgánicas/química , Receptores de Transferrina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peroxidasa/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Transducción de Señal/efectos de los fármacos , Peróxido de Hidrógeno , Masculino
5.
J Mater Chem B ; 12(15): 3719-3740, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529844

RESUMEN

Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.


Asunto(s)
Catequina , Periodontitis Crónica , Diabetes Mellitus Experimental , Sistemas de Liberación de Medicamentos , Glucosa , Especies Reactivas de Oxígeno , Glucosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Periodontitis Crónica/complicaciones , Periodontitis Crónica/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Animales , Ratas , Catequina/administración & dosificación , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Reología , Hidrogeles , Antioxidantes/metabolismo , Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Osteoclastos/citología , Osteoblastos/citología , Diferenciación Celular , Regeneración Ósea/efectos de los fármacos , Microtomografía por Rayos X , Pérdida de Hueso Alveolar/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Alginatos , Bases de Schiff , Masculino , Ratas Sprague-Dawley , Células RAW 264.7 , Ratones
6.
Quintessence Int ; 55(4): 328-334, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38329717

RESUMEN

OBJECTIVE: This study aimed to evaluate the effectiveness of biomaterials in bone healing of critical bone defects created by piezoelectric surgery in rat calvaria. METHOD AND MATERIALS: Histomorphologic analysis was performed to assess bone regeneration and tissue response. Fifty animals were randomized into five groups with one of the following treatments: Control group (n = 10), spontaneous blood clot formation with no bone fill; BO group (Bio-Oss, Geistlich Pharma; n = 10), defects were filled with bovine medullary bone substitute; BF group (Bonefill, Bionnovation; n = 10), defects were filled with bovine cortical bone substitute; hydroxyapatite group (n = 10), defects were filled with hydroxyapatite; calcium sulfate group (n = 10), defects were filled with calcium sulfate. Five animals from each group were euthanized at 30 and 45 days. The histomorphometry calculated the percentage of the new bone formation in the bone defect. RESULTS: All data obtained were evaluated statistically considering P < .05 as statistically significant. The results demonstrated the potential of all biomaterials for enhancing bone regeneration. The findings showed no statistical differences between all the biomaterials at 30 and 45 days including the control group without bone grafting. CONCLUSION: In conclusion, the tested biomaterials presented an estimated capacity of osteoconduction, statistically nonsignificant between them. In addition, the selection of biomaterial should consider the specific clinical aspect, resorption rates, size of the particle, and desired bone healing responses. It is important to emphasize that in some cases, using no bone filler might provide comparable results with reduced cost and possible complications questioning the very frequent use of ridge presentation procedures.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos , Sulfato de Calcio , Durapatita , Minerales , Distribución Aleatoria , Ratas Wistar , Cráneo , Animales , Sustitutos de Huesos/uso terapéutico , Sustitutos de Huesos/farmacología , Ratas , Regeneración Ósea/efectos de los fármacos , Cráneo/cirugía , Sulfato de Calcio/uso terapéutico , Sulfato de Calcio/farmacología , Durapatita/uso terapéutico , Minerales/uso terapéutico , Bovinos , Piezocirugía/métodos , Masculino , Materiales Biocompatibles/uso terapéutico , Matriz Ósea/trasplante , Osteogénesis/efectos de los fármacos , Proceso Alveolar/patología
7.
Adv Healthc Mater ; 13(11): e2303851, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226706

RESUMEN

Targeting macrophages can facilitate the site-specific repair of critical bone defects. Herein, a composite hydrogel, gelatin-Bletilla striata polysaccharide-mesoporous bioactive glass hydrogel (GBMgel), is constructed via the self-assembly of mesoporous bioactive glass on polysaccharide structures, through the Schiff base reaction. GBMgel can efficiently capture macrophages and drive the recruitment of seed stem cells and vascular budding required for regeneration in the early stages of bone injury, and the observed sustained release of inorganic silicon ions further enhances bone matrix deposition, mineralization, and vascular maturation. Moreover, the use of macrophage-depleted rat calvarial defect models further confirms that GBMgel, with ligand-selective macrophage targeting, increases the bone regeneration area and the proportion of mature bone. Mechanistic studies reveal that GBMgel upregulates the TLR4/NF-κB and MAPK macrophage pathways in the early stages and the JAK/STAT3 pathway in the later stages; thus initiating macrophage polarization at different time points. In conclusion, this study is based on the endogenous self-healing properties of bone macrophages, which enhances stem cell homing, and provides a research and theoretical basis upon which bone tissue can be reshaped and regenerated using the body's immune power, providing a new strategy for the treatment of critical bone defects.


Asunto(s)
Regeneración Ósea , Hidrogeles , Macrófagos , Animales , Regeneración Ósea/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Ratas Sprague-Dawley , Ratones , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células RAW 264.7 , Ligandos , Masculino , Gelatina/química , Cráneo/efectos de los fármacos , Cráneo/patología , Cráneo/lesiones , Polisacáridos/química , Polisacáridos/farmacología
8.
ACS Biomater Sci Eng ; 9(9): 5332-5346, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642176

RESUMEN

Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.


Asunto(s)
Hidrogeles , Periodontitis , Periodontitis/tratamiento farmacológico , Hidrogeles/administración & dosificación , Hidrogeles/síntesis química , Hidrogeles/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Animales , Ratas , Ratas Sprague-Dawley , Regeneración Ósea/efectos de los fármacos , Biopelículas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Biol Macromol ; 242(Pt 3): 124820, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178890

RESUMEN

Bone tissue is a natural composite, exhibiting complicated structures and unique mechanical/biological properties. With an attempt of mimicking the bone tissue, a novel inorganic-organic composite scaffolds (ZrO2-GM/SA) was designed and prepared via the vacuum infiltration method and the single/double cross-linking strategy by blending GelMA/alginate (GelMA/SA) interpenetrating polymeric network (IPN) into the porous zirconia (ZrO2) scaffold. The structure, morphology, compressive strength, surface/interface properties, and biocompatibility of the ZrO2-GM/SA composite scaffolds were characterized to evaluate the performance of the composite scaffolds. Results showed that compared to ZrO2 bare scaffolds with well-defined open pores, the composite scaffolds prepared by double cross-linking of GelMA hydrogel and sodium alginate (SA) presented a continuous, tunable and honeycomb-like microstructure. Meanwhile, GelMA/SA showed favorable and controllable water-uptake capacity, swelling property and degradability. After the introduction of IPN components, the mechanical strength of composite scaffolds was further improved. The compressive modulus of composite scaffolds was significantly higher than the bare ZrO2 scaffolds. In addition, ZrO2-GM/SA composite scaffolds had highly biocompatibility and displayed a potent proliferation and osteogenesis of MC3T3-E1 pre-osteoblasts compared to bare ZrO2 scaffolds and ZrO2-GelMA composite scaffolds. At the same time, ZrO2-10GM/1SA composite scaffold regenerated significantly greater bone than other groups in vivo. This study demonstrated that the proposed ZrO2-GM/SA composite scaffolds had great research and application potential in bone tissue engineering.


Asunto(s)
Alginatos , Regeneración Ósea , Hidrogeles , Osteogénesis , Andamios del Tejido , Circonio , Hidrogeles/química , Hidrogeles/farmacología , Circonio/química , Circonio/farmacología , Polímeros/química , Polímeros/farmacología , Porosidad , Alginatos/química , Alginatos/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Células 3T3 , Osteogénesis/efectos de los fármacos
10.
Curr Mol Med ; 23(5): 410-419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35996252

RESUMEN

BACKGROUND: Vitamin D receptor (VDR) is critical for mineral and bone homeostasis since it plays an essential role in the osteoblast differentiation of bone marrow mesenchymal stem cells (BM-MSCs). Hydroxysafflor yellow A (HSYA) has the potential to promote bone mineralization and inhibit bone resorption, while its detailed mechanism needs to be elaborated. OBJECTIVE: This study intends to explore the action of HSYA on the proliferation and differentiation of BM-MSC and the underlying mechanism. METHODS: Different concentrations of HSYA to BM-MSC and CCK-8, and EdU were used to detect cell viability and proliferation. The alkaline phosphatase (ALP) was used to observe the differentiation ability of BM-MSC osteoblasts. The calcium uptake and mineralization of osteoblast-like cells were observed by alizarin red staining. The level of calcium ion uptake in cells was detected by flow cytometry. AutoDock was performed for molecular docking of HSYA to VDR protein. Immunofluorescence and western blotting were performed to detect the expression of VDR expression levels. Finally, the effect of VDR was verified by a VDR inhibitor. RESULTS: After treatment with HSYA, the proliferation and calcium uptake of BM-MSC were increased. The level of ALP increased significantly and reached its peak on the 12th day. HSYA promoted calcium uptake and calcium deposition, and mineralization of osteoblasts. The western blotting and immunofluorescence showed that HSYA increased the expression of VDR in the osteoblast-like cell's nucleus and upregulated Osteocalcin, S100 calcium-binding protein G, and CYP24A1. In addition, HYSA treatment increased the expression of osteopontin and the synthesis of osteogenic proteins, such as Type 1 collagen. After the addition of the VDR inhibitor, the effect of HSYA was weakened. CONCLUSION: HSYA could significantly promote the activity and proliferation of osteoblasts and increase the expression level of VDR in osteoblasts. HSYA may also improve calcium absorption by osteoblasts by regulating the synthesis of calciumbinding protein and vitamin D metabolic pathway-related proteins.


Asunto(s)
Células de la Médula Ósea , Chalcona , Células Madre Mesenquimatosas , Osteoblastos , Quinonas , Osteoblastos/citología , Diferenciación Celular/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Calcio/metabolismo , Receptores de Calcitriol/metabolismo , Humanos , Chalcona/análogos & derivados , Chalcona/farmacología , Quinonas/farmacología
11.
Biomaterials ; 288: 121732, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36031457

RESUMEN

Regenerating defective bone in patients with diabetes mellitus remains a significant challenge due to high blood glucose level and oxidative stress. Here we aim to tackle this issue by means of a drug- and cell-free scaffolding approach. We found the nanoceria decorated on various types of scaffolds (fibrous or 3D-printed one; named nCe-scaffold) could render a therapeutic surface that can recapitulate the microenvironment: modulating oxidative stress while offering a nanotopological cue to regenerating cells. Mesenchymal stem cells (MSCs) recognized the nanoscale (tens of nm) topology of nCe-scaffolds, presenting highly upregulated curvature-sensing membrane protein, integrin set, and adhesion-related molecules. Osteogenic differentiation and mineralization were further significantly enhanced by the nCe-scaffolds. Of note, the stimulated osteogenic potential was identified to be through integrin-mediated TGF-ß co-signaling activation. Such MSC-regulatory effects were proven in vivo by the accelerated bone formation in rat calvarium defect model. The nCe-scaffolds further exhibited profound enzymatic and catalytic potential, leading to effectively scavenging reactive oxygen species in vivo. When implanted in diabetic calvarium defect, nCe-scaffolds significantly enhanced early bone regeneration. We consider the currently-exploited nCe-scaffolds can be a promising drug- and cell-free therapeutic means to treat defective tissues like bone in diabetic conditions.


Asunto(s)
Regeneración Ósea , Diabetes Mellitus , Células Madre Mesenquimatosas , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular , Cerio/farmacología , Cerio/uso terapéutico , Diabetes Mellitus/metabolismo , Integrinas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Estrés Oxidativo , Ratas , Factor de Crecimiento Transformador beta/metabolismo
12.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216432

RESUMEN

Bone tissue engineering has been developed in the past decades, with the engineering of bone substitutes on the vanguard of this regenerative approach. Polycaprolactone-based scaffolds are fairly applied for bone regeneration, and several composites have been incorporated so as to improve the scaffolds' mechanical properties and tissue in-growth. In this study, hydroxyapatite is incorporated on polycaprolactone-based scaffolds at two different proportions, 80:20 and 60:40. Scaffolds are produced with two different blending methods, solvent casting and melt blending. The prepared composites are 3D printed through an extrusion-based technique and further investigated with regard to their chemical, thermal, morphological, and mechanical characteristics. In vitro cytocompatibility and osteogenic differentiation was also assessed with human dental pulp stem/stromal cells. The results show the melt-blending-derived scaffolds to present more promising mechanical properties, along with the incorporation of hydroxyapatite. The latter is also related to an increase in osteogenic activity and promotion. Overall, this study suggests polycaprolactone/hydroxyapatite scaffolds to be promising candidates for bone tissue engineering, particularly when produced by the MB method.


Asunto(s)
Huesos/efectos de los fármacos , Durapatita/química , Durapatita/uso terapéutico , Poliésteres/química , Poliésteres/uso terapéutico , Solventes/química , Andamios del Tejido/química , Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/química , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ensayo de Materiales/métodos , Osteogénesis/efectos de los fármacos , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos/métodos
13.
Carbohydr Polym ; 283: 119142, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35153015

RESUMEN

Bone repair is a self-healing process. However, critical-sized bone defects need bone augmentation where bone tissue engineering plays vital role. Bone tissue Engineering (BTE) requires unique combinations of scaffolds, cells, and bio-signal molecules. Bone scaffold materials should be biocompatible, bioresorbable and exhibit biomimetic properties. Natural polymers, acquiring cell binding motives, producing nontoxic degradation products and tunable properties are ideal materials. Anionic polysaccharides of natural origin mimic mammalian ECM components and even the group called GAGs (Glycosaminoglycan) are actual components of ECM possessing various functions including cell adhesion, cell signaling, maintenance of homeostasis and inflammation control. Among them, anionic polysaccharides provide stabilization and sustained release of growth factors (GFs), porosity, calcium phosphate nucleation site, viscoelasticity, and water retention. Therefore, anionic polysaccharides are unique biomaterials for BTE. In this review, we have summarized the highlights of bone tissue engineering and recent applications of anionic polysaccharides in BTE.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Huesos/metabolismo , Polisacáridos/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Aniones/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biomiméticos/farmacología , Adhesión Celular/efectos de los fármacos , Glicosaminoglicanos/química , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Polímeros/química , Polisacáridos/química , Porosidad , Ratas
14.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163761

RESUMEN

The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/farmacología , Cerio/química , Gelatina/química , Hidrogeles/farmacología , Hidroxiapatitas/química , Metacrilatos/química , Osteoblastos/citología , Animales , Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Hidrogeles/química , Ratones , Osteogénesis , Polvos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
15.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008904

RESUMEN

Glucocorticoids delay fracture healing and induce osteoporosis. However, the mechanisms by which glucocorticoids delay bone repair have yet to be clarified. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. We herein investigated the roles of macrophages in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered with dexamethasone (Dex). Dex significantly decreased the number of F4/80-positive macrophages at the damaged site two days after femoral bone injury. It also attenuated bone injury-induced decreases in the number of hematopoietic stem cells in bone marrow in wild-type and PAI-1-deficient mice. PAI-1 deficiency significantly weakened Dex-induced decreases in macrophage number and macrophage colony-stimulating factor (M-CSF) mRNA levels at the damaged site two days after bone injury. It also significantly ameliorated the Dex-induced inhibition of macrophage phagocytosis at the damaged site. In conclusion, we herein demonstrated that Dex decreased the number of macrophages at the damaged site during early bone repair after femoral bone injury partly through PAI-1 and M-CSF in mice.


Asunto(s)
Regeneración Ósea , Glucocorticoides/farmacología , Macrófagos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Médula Ósea/patología , Regeneración Ósea/efectos de los fármacos , Recuento de Células , Dexametasona/farmacología , Femenino , Fémur/efectos de los fármacos , Fémur/lesiones , Fémur/patología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Trastornos Hemorrágicos/patología , Macrófagos/efectos de los fármacos , Macrófagos/ultraestructura , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/deficiencia
16.
ACS Appl Mater Interfaces ; 14(3): 3762-3772, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35020349

RESUMEN

Surgical site infection (SSI) is a severe complication associated with orthopedic bone reconstruction. For both infection prevention and bone regeneration, the framework surface of osteoconductive and bioresorbable scaffolds must be locally modified by minimum antibacterial substances, without sacrificing the osteoconductivity of the scaffold framework. In this study, we fabricated antibacterial honeycomb scaffolds by replacing carbonate apatite, which is the main component of the scaffold, with silver phosphate locally on the scaffold surface via dissolution-precipitation reactions. When the silver content was 9.9 × 10-4 wt %, the honeycomb scaffolds showed antibacterial activity without cytotoxicity and allowed cell proliferation, differentiation, and mineralization. Furthermore, the antibacterial honeycomb scaffolds perfectly prevented bacterial infection in vivo in the presence of methicillin-resistant Staphylococcus aureus, formed new bone at 2 weeks after surgery, and were gradually replaced with a new bone. Thus, the antibacterial honeycomb scaffolds achieved both infection prevention and bone regeneration. In contrast, severe infection symptoms, including abscess formation, osteolytic lesions, and inflammation, occurred 2 weeks after surgery when honeycomb scaffolds without silver phosphate modification were implanted. Nevertheless, the unmodified honeycomb scaffolds eliminated bacteria and necrotic bone through their scaffold channels, resulting in symptom improvement and bone formation. These results suggest that the honeycomb structure is inherently effective in hindering bacterial growth. This novel insight may contribute to the development of antibacterial scaffolds. Moreover, our modification method is useful for providing antibacterial activity to various biomaterials.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/química , Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Andamios del Tejido/química
17.
Biomed Mater ; 17(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026740

RESUMEN

The design of bone scaffolds is predominately aimed to well reproduce the natural bony environment by imitating the architecture/composition of host bone. Such biomimetic biomaterials are gaining increasing attention and acknowledged quite promising for bone tissue engineering. Herein, novel biomimetic bone scaffolds containing decellularized small intestinal submucosa matrix (SIS-ECM) and Sr2+/Fe3+co-doped hydroxyapatite (SrFeHA) are fabricated for the first time by the sophisticated self-assembled mineralization procedure, followed by cross-linking and lyophilization post-treatments. The results indicate the constructed SIS/SrFeHA scaffolds are characterized by highly porous structures, rough microsurface and improved mechanical strength, as well as efficient releasing of bioactive Sr2+/Fe3+and ECM components. These favorable physico-chemical properties endow SIS/SrFeHA scaffolds with an architectural/componential biomimetic bony environment which appears to be highly beneficial for inducing angiogenesis/osteogenesis bothin vitroandin vivo. In particular, the cellular functionality and bioactivity of endotheliocytes/osteoblasts are significantly enhanced by SIS/SrFeHA scaffolds, and the cranial defects model further verifies the potent ability of SIS/SrFeHA to acceleratein vivovascularization and bone regeneration following implantation. In this view these results highlight the considerable angiogenesis/osteogenesis potential of biomimetic porous SIS/SrFeHA scaffolds for inducing bone regeneration and thus may afford a new promising alternative for bone tissue engineering.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Matriz Extracelular Descelularizada , Durapatita , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química , Animales , Materiales Biomiméticos , Línea Celular , Células Cultivadas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Durapatita/química , Durapatita/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mucosa Intestinal/citología , Intestino Delgado/citología , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Porosidad
18.
Drug Des Devel Ther ; 16: 165-182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35058687

RESUMEN

PURPOSE: High glucose environment in diabetes mellitus induces the dysfunction of bone marrow-derived mesenchymal stromal cells (BMSCs) and impairs bone regeneration. Chrysin is a natural polyphenol with outstanding anti-inflammation and anti-oxidation ability. However, whether and how chrysin affects BMSCs in high glucose conditions remain poorly understood. The present study aimed to explore the effects and underlying mechanisms of chrysin on the BMSCs exposed to high glucose environment. MATERIALS AND METHODS: Cell viability was detected by cell counting kit 8 assay and 5-ethynyl-2'-deoxyuridine staining, while cell apoptosis was determined through flow cytometry using Annexin V-FITC/PI kit. The oxidative stress in BMSCs was evaluated by detecting the reactive oxygen species production, malondialdehyde content, and superoxide dismutase activity. Alkaline phosphatase staining, Alizarin Red staining, and quantitative real-time PCR were performed to determine the osteogenic differentiation. Western blot was used to examine the expression of the PI3K/ATK/Nrf2 signaling pathway. Furthermore, chrysin was injected into calvarial defects of type 1 diabetic SD rats to assess its in vivo bone formation capability. RESULTS: Chrysin reduced oxidative stress, increased cell viability, and promoted osteogenic differentiation in BMSCs exposed to high glucose. Blocking PI3K/ATK/Nrf2 signaling pathway weakened the beneficial effects of chrysin, indicating that chrysin at least partly worked through the PI3K/ATK/Nrf2 pathway. CONCLUSION: Chrysin can protect BMSCs from high glucose-induced oxidative stress via the activation of the PI3K/AKT/Nrf2 pathway, and promote bone regeneration in type 1 diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Flavonoides/farmacología , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glucosa/metabolismo , Masculino , Malondialdehído/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
19.
Nanotechnology ; 33(21)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092950

RESUMEN

Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Andamios del Tejido/química , Animales , Regeneración Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Humanos
20.
J Mater Sci Mater Med ; 33(1): 11, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032239

RESUMEN

Pyrophosphate-containing calcium phosphate implants promote osteoinduction and bone regeneration. The role of pyrophosphate for inflammatory cell-mesenchymal stem cell (MSC) cross-talk during osteogenesis is not known. In the present work, the effects of lipopolysaccharide (LPS) and pyrophosphate (PPi) on primary human monocytes and on osteogenic gene expression in human adipose-derived MSCs were evaluated in vitro, using conditioned media transfer as well as direct effect systems. Direct exposure to pyrophosphate increased nonadherent monocyte survival (by 120% without LPS and 235% with LPS) and MSC viability (LDH) (by 16-19% with and without LPS). Conditioned media from LPS-primed monocytes significantly upregulated osteogenic genes (ALP and RUNX2) and downregulated adipogenic (PPAR-γ) and chondrogenic (SOX9) genes in recipient MSCs. Moreover, the inclusion of PPi (250 µM) resulted in a 1.2- to 2-fold significant downregulation of SOX9 in the recipient MSCs, irrespective of LPS stimulation or culture media type. These results indicate that conditioned media from LPS-stimulated inflammatory monocytes potentiates the early MSCs commitment towards the osteogenic lineage and that direct pyrophosphate exposure to MSCs can promote their viability and reduce their chondrogenic gene expression. These results are the first to show that pyrophosphate can act as a survival factor for both human MSCs and primary monocytes and can influence the early MSC gene expression. Graphical abstract.


Asunto(s)
Difosfatos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Monocitos/fisiología , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/genética , Regeneración Ósea/fisiología , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Medios de Cultivo Condicionados , Regulación hacia Abajo/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Ensayo de Materiales , Osteogénesis/genética , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...